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Abstract: With the introduction of novel automated vehicles (AVs), drivers 
are becoming passengers who could be susceptible to motion sickness 
symptoms in cars (carsickness). Therefore, it is advisable to adapt driving 
characteristics like accelerations, braking, lane change behaviors based on 
the sensitivity of the passengers. Physiological markers play an essential 
role in empirical evaluations and development of potential countermeasures 
that can appropriately respond to a passenger’s state with a possibility to 
detect early signs of carsickness at an individual level. In this work, we 
examined 48 healthy participants’ data from an experimental study spanned 
over several laps and developed an algorithm to address reliable, objective 
detection of carsickness symptoms prior to their subjective assessments. 
As a result, models with Logistic Regression Classifier recorded highest 
weighted accuracy of (80 %) and F1 scores of (0.78) over the laps. 
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1.  Introduction 

 
Carsickness is a syndrome associated with a wide variety of unpleasant symptoms. 

This phenomenon might become highly relevant when passengers travelling in 
autonomous vehicles are engaged in non-driving, visual/visuomotor tasks and while 
potentially facing rearwards. In recent years, many researchers incorporated biological 
signals for various mental health recognition tasks such as classification of stress 
levels in automobile drivers (Lopez-Martinez et al. 2019), detection of simulator 
sickness (Tauscher et al. 2020) and Virtual Reality (VR) induced motion sickness 
(Keshavarz et al. 2022). However, only a limited number of studies have specifically 
addressed carsickness detection by employing multimodal learning approaches in 
real-life driving scenarios. While Tan et al. (2022) addressed motion sickness detection 
with traditional machine learning models, Hwang et al. (2022) examined unimodal and 
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multimodal datasets (EEG, ECG, PPG, GSR etc.) with deep learning models, but the 
real-time applicability of such algorithms was not discussed. As carsickness symptoms 
might not be indicated by instantaneous changes in biological signals, these algorithms 
will have progressively accurate predictions over the time, when they are trained with 
datasets obtained from passengers being continuously monitored. Hence, we propose 
a real-time applicable algorithm, whereby machine learning models appropriately 
perceive passengers while examining them over a longer course of duration in the form 
of consecutive laps. The following algorithm pipeline (Figure 1) was implemented as a 
part of this work, with an objective to classify participants into different levels of 
carsickness conditions (null, low, and high) prior to their subjective assessments. 

 

 
Figure 1: Algorithm Pipeline 
 
 
2.  Methodology 

 
This section details the evaluation of objective measures to detect carsickness 

symptoms, and the proposed methodology comprises the following intermediate steps:  
 
2.1  Motion Sickness Recognition Database: 

 
To formulate an input database as a part of an algorithm development for model 
training and testing purposes, subjective assessments (MISC Scores: Misery Scale) 
along with objective measures (physiological measurements) were obtained from an 
experimental study with a group of healthy participants (N = 48 [n = 25 male, n = 23 
female]; M = 32.91 years, SD = 12.10 years), when they were driven on a prescribed 
route over several laps under driving conditions similar to that in autonomous driving 
applications. During these experimental evaluations, physiological measurements 
(EDA, ECG and EDR) were recorded at a frequency of 512 Hz by using a sensor set 
from g.tec medical engineering GmbH. Similarly, a system of thermography-based 
infrared (IR) sensor and an optical camera were used for the evaluation of skin 
temperature measurements. The FLIR Lepton 3.5 IR sensor was positioned at approxi-
mately 1m in front of the participants and was continuously calibrated to improve 
accuracy. A more detailed explanation of the experimental design, objective measures 
and subjective assessments is described by Wagner-Douglas et al. (2024). 
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2.2  Feature Extraction: 
 
Raw sensor data prone to artifacts (environmental, body, motion), noise, outliers 

and missing values were processed with cleaning techniques such as filtering, 
smoothing, and outlier detection. Pre-processing of cleaned sensor data also involved 
normalization of the data range, standardization, and dimensionality reduction techni-
ques to reduce data complexities, enhance the quality, integrity, and consistency of 
the extracted features. Overall, 12 indicators from ECG, EDA, IR measurements were 
extracted, and the database got accumulated with 13 new features (including MISC) 
corresponding to every finished lap. Specifically, indicators from ECG measures were 
obtained using the software tool ‘Kubios-HRV’ by Tarvainen et al. (2014). This incorpo-
rated R-R interval detection and beat correction algorithms by Lipponen et al. (2019) 
for Time- and Frequency domain analysis of the Heart Rate Variability (HRV). From 
EDA measures, raw signal was decomposed into Phasic, Tonic components by a 
deconvolution approach proposed by Benedek et al. (2010). Later, indicators such as 
mean amplitudes from raw signal, area under the curve and skin conductance 
responses (SCRs) from phasic driver components were derived. While skin tempera-
ture was derived from a rectangular window of (7 x 5) pixels on the forehead, breath 
temperature was analysed from cabin temperature recordings using MATLAB. 

These indicators were initially analysed using a Linear-Mixed-Effects Model (LMEM) 
individually for each sensor set. Here, MISC score was the dependent variable, while 
the number of driven laps, testing condition (baseline or parcours), the season (sum-
mer or winter), and the appointment (first or second) were the fixed effects. With the 
extracted features as the predictors used in this model, all the participant-IDs were 
considered as the random effect to respect interindividual influences. As a result, 
significant effects were shown with the interactions between the lap-count and the 
testing condition. While indicators HR, EDR from ECG data and mean amplitude of the 
raw signal from EDA data followed an expected trend, indicators from IR data did not 
result in a significant effect (Wagner-Douglas et al. 2023). Although, these unimodal 
analyses confirmed the relevant literature findings, the relationships between individual 
indictors and MISC scores indicated the relevance of multimodal learning models to 
detect carsickness symptoms in real-time. As this work aimed at an integrative analysis 
of multiple biological signals, Machine Learning (ML) models with highest performance 
ratings in classification tasks were employed on data obtained after every lap.  
 
2.3  Feature Selection: 

 
The proposed framework follows the same design as that of the experimental evalu-
ations, where participants data after every lap was introduced into the input database 
and the MISC score to be obtained (MISC_n, after nth lap) was predicted. Along with 
all the primary features, the model also considered secondary features such as differ-
rences in measurements from the previous lap and the difference from the acclimati-
zation phase (lap: 0). As features were progressively accumulating after every lap, 
Recursive Feature Elimination and Cross Validation (RFECV) was implemented as a 
part of feature selection module. All the selected features were then fed into the model 
in the form of a feed-forward loop (Figure 2) after every lap and this helped models 
with consistency and overall improvement in their performances over the laps. 
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Figure 2: Model Implementation. 
 
2.4  Multi-Class Classification: 

 
The selected features (except MISC_n) were randomly split into test (80 %), train 

(20 %) datasets and the estimator models were trained to predict output variable i.e. 
MISC score of the finished lap. Estimators such as Logistic Regression Classifier (LR), 
Random Forests Classifier (RF), Gradient Boost Classifier (GB) and Decision Trees 
Classifier (DT) were used in this approach. Since this was a multiclass classification 
problem, the predicted classes were mapped with MISC scores: (class 0: {0}; class 1: 
{1, 2, 3}; class 2: {4, 5, 6, 7}). Since these models were trained with sparse training 
datasets that recorded high misery scores (MISC = 5+), they were expected to have a 
decline in their performance with increasing MISC scores as the laps progressed. To 
improve this, estimators with RFECV along with hyperparameter tuning techniques 
such as Grid-Search-CV (GS) were implemented with a balanced weighting method 
across the predicted classes. Model results in the form of actual and predicted classes 
are presented with the help of a confusion matrix corresponding to each lap (Figure 3). 

 

 
Figure 3: Confusion Matrices –  Logistics Regression (LR) 

 
 
3.  Results and Discussions 
 

As the laps progressed, the interplay between the attributes (TP, TN, FP, FN) of 
these confusion matrices, indicate that the predicted classes did match an increasing 
trend of the actual classes. While accuracy scores were defined as the fraction of 
correct predictions (TP+TN), the F1 scores were defined as the harmonic mean of 
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precision and recall. Although these ML models showed promising results, sparse 
training datasets with minimal count of predicted classes caused limitations in the 
cross-validation steps and affected the quality of model training process. As a result, 
performance metrics of all these models declined in the middle and in the last laps. 
However, accuracy, F1 scores were progressive over the laps and all the performance 
metrics recorded their highest scores in the second last lap (Figure 4).  
 

 
Figure 4: Performance Metrics – Logistics Regression (LR) 

 
Among the evaluated classifiers, Logistic Regression outperformed others with 

highest weighted accuracy of (80 %) and F1 scores of (0.78) in the second last lap. 
This model results are presented with the help of test and predicted samples along 
with their corresponding probability distributions and ROC – AUC curves (Figure 5).  

 

 
Figure 5: Model Results after Lap:6 – Logistics Regression (LR) 

 
The proposed algorithm has been proven to be efficient in multi-class classification 

approaches for predicting if the passenger was motion sick prior to their subjective 
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assessments. LR model results are comparable with the state-of-the-art approaches 
of Hwang et. al. (2022) having an accuracy of (76.26 %) and F1-Score of (0.7350). 
 
4.  Conclusions 

 
Indicators from ECG, EDA, and IR sensor sets having profound correlation with 

MISC scores served as input features and the proposed algorithm classified 
passengers into different car sickness levels irrespective of the testing conditions. 
Real-time classification of participants would be susceptible to limitations caused by 
the feature extraction and model training steps. However, all the performance metrics 
indicate that this approach can be improved further with high quality training data. 
Stratified sampling of training datasets would be beneficial for predicting target classes 
with heterogeneous subgroups. The presented approach demonstrates the potential 
of multimodal learning models to detect early signs of carsickness symptoms in 
passengers at an individual level. In-series applicability of such technologies is still in 
research phase as the evaluation criteria being the accuracy of the sensor systems 
can be strongly influenced by environmental, body artifacts. In the future, with 
advancements in wearable devices and having these models incorporated into the 
decision-making algorithms of driverless autonomous vehicles, driving characteristics 
could be adapted to enhance ride comfort, passenger well-being and safety. 
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